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SUMMARY

The calculation of friction when solving elastohydrodynamic lubrication (EHL) problems is of consid-
erable practical engineering importance. Adjoint techniques allow the error in this integral quantity to
be estimated and controlled as part of an adaptive solution strategy. This paper considers two simpli�ed
EHL models and demonstrates the successful application of the adjoint approach to error estimation of
friction-like quantities for this challenging class of problem. Copyright ? 2005 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Elastohydrodynamic lubrication (EHL) occurs when a lubricant �ows between non-conformal
machine components under extremely heavy loads. The pressures generated are su�cient
to alter the rheology of the lubricant to that of a glass or plastic, and in such conditions
the machine components deform elastically. The computation of this highly nonlinear free
boundary problem may require a large number of points on uniform meshes. For example,
Reference [1] shows how 100 000 mesh points may be necessary in one dimension to resolve
fully all the features of interest. Use of non-uniform meshes for EHL solutions has been
investigated previously, e.g. References [1, 2] among others, but they have not commonly
been applied in practice.
An important industrial requirement of EHL calculations is to be able to predict accu-

rately the friction generated through a contact, for a given lubricant and a given set of
operating conditions. The friction is an integral quantity that depends on the pressure deriva-
tive, the �lm thickness and the viscosity of the oil. Furthermore, it is desirable that the
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solution be calculated as e�ciently as possible subject to the constraint that the resulting
friction is estimated su�ciently accurately. This provides the motivation for the application
of adjoint error estimation techniques, combined with local mesh re�nement, explored in
this paper.
The mathematical model describing a one-dimensional steady state line contact is given in

Reference [3]. This consists of a second-order equation for the pressure (p) and two further
equations involving the �lm thickness (h), the applied load (w), and the unknown cavitation
point Xc. In dimensional form, the equations are
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where us, R, E′ and x0 are given constants, p, h0 and Xc are to be determined, and the
viscosity (�) and density (�) vary nonlinearly with p.
In this paper, we consider two simpli�ed versions of system (1)–(2), which are motivated

and described in the following section. Section 3 then brie�y outlines the key ideas behind the
adjoint-based error estimate presented here, whilst Section 4 presents some illustrative results
when the adjoint procedure is applied to the two model problems and considers how it can
be used to drive adaptivity. Finally, Section 5 brie�y discusses the success of this approach
and its possible future extensions.

2. SIMPLIFIED PROBLEM

For the purposes of understanding and controlling the discretization error for the full EHL
problem, we consider two simpli�ed line contact models, one of which is linear and the
other nonlinear. In both cases, we consider an isoviscous, incompressible lubricant, where the
surface geometry does not depend explicitly on the pressure.
The simplest model that we consider here involves solving a two-point boundary value

problem, given by

d
dX

(
H 3 dP
dX

)
−� dH

dX
= 0 (3)

H (X ) = H0+
X 2

2
(4)

with boundary conditions P(X−∞)=P(Xc)=0. The position of the right-hand boundary,
Xc, is �xed at a pre-determined value, as is H0. The other boundary position, X−∞, is
chosen to be su�ciently far to the left such that the friction is insensitive to changes in
its value.
This linear problem may be modi�ed so as to be closer to (1)–(2), by allowing Xc to be

an unknown free boundary and by treating H0 as a further unknown, to be determined by
constraining the pressures to balance an applied load. This yields the following additional
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equation and boundary condition:
∫ Xc

X−∞
P(X ) dX =L; P′(Xc)=0 (5)

where X−∞ is de�ned to be equal to Xc minus a given, constant, domain size.
A �nite di�erence discretization of the type typically employed in EHL calculations, [4],

has been used in this work. This consists of a second-order scheme based upon a central
di�erence approximation to d=dX (H 3(dP=dX )) in Equation (3) given above.

3. ADJOINT THEORY

The adjoint approach used here is based upon the ideas presented in References [5, 6],
although there are a number of computational details that are problem dependent. Following
the approach of Reference [5], the subscript H denotes quantities computed on an existing
‘coarse’ mesh. Similarly, the subscript h denotes quantities on a uniform re�nement of this
mesh, and IHh denotes cubic spline interpolation of the coarse mesh values onto this ‘�ne’
mesh.
Given a computed coarse mesh solution, uH , and a corresponding �ne mesh functional,

Fh(IHh uH ), an estimate of the error in this functional may be obtained by predicting what its
value would be were the solution, uh, to be calculated on the �ne mesh: Fh(uh). Whilst this
does not directly give an estimate of the total error, by re�ning the mesh until the di�erence
between consecutive meshes is su�ciently small, the error can be controlled. This is achieved
through solving an extra system of equations on the coarse mesh:

[
@RH
@uH

]T
�H =

(
@FH
@uH

)T
(6)

where R is the system of �nite di�erence residual equations, u is the set of dependent vari-
ables and F is the functional of interest. The solution �H is the adjoint vector. This gives
the sensitivity of the functional to the residuals which, along with the solution uH , may be
interpolated onto the �ne mesh to calculate a correction as shown:

F̃(uH )=Fh(IHh uH )− (IHh �H )TRh(IHh uH ) (7)

We refer to (IHh �H )
TRh(IHh uH ), in Equation (7) as the correction, since this is the quantity

which is used to ‘correct’ the friction calculated from the coarse mesh solution. This correction
provides an estimate of Fh(IHh uH )−Fh(uh): hence F̃ represents an estimate of Fh(uh). The
correction will also be used as the basis for adaptive re�nement by re�ning the mesh in the
areas where the contribution to this correction is largest, i.e. where the residuals weighted by
scaling factors from the adjoint solution are large.
As indicated in the introduction, the functional that is of interest in this work is the friction

which, for our model problems, is given by

F(P)=
∫ Xc

X−∞
− @P
@X
H
2
+
�
H
dX (8)
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The �rst term in the integrand speci�es the rolling contribution to the friction, whilst the
second term represents the sliding component within the contact. The @P=@X term is dis-
cretized using a central di�erence scheme, and the integral is approximated numerically using
the trapezoidal rule. The derivative of this discrete version of (8) forms the right-hand side
of (6).
It should also be noted that the presence of Xc and H0 in the friction calculation, (8),

must be accounted for in the adjoint formulation of the nonlinear model problem for which
they are both unknowns. Hence, in the notation of (6), RH consists of residuals for the �nite
di�erence approximation of P at each interior mesh point plus two residuals obtained from
discrete forms of the equations in (5), shown here as

RH0 =L−
∫ Xc

X−∞
P(X ) dX; RXc = − P′(Xc)

Similarly, uH consists of the unknown pressure at each of the mesh points as well as Xc
and H0. In this case, the Jacobian matrix has a tridiagonal structure plus two non-zero rows
(corresponding to (@RH0=@Pi, @RXc=@Pi) and two further non-zero columns corresponding to
(@Rpi =@H0, @Rpi =@Xc)). The Jacobian matrix thus has an arrowhead structure. Having obtained
the solution to this full adjoint approximation, the calculation of the estimated friction, Fh(IHh ),
is performed using Equation (7).

4. RESULTS

In this section, we present selected results for the adjoint error correction applied to both the
nonlinear and linear problems.
The �rst column of Table I indicates the number of mesh points used in the solution of

the coarse mesh problem. Column 2 indicates the friction as calculated using the interpolant
of this solution on the uniform re�nement of this mesh. Column 3 shows the estimated
correction to this friction value (computed according to (7)), and column 4 shows the corrected
value. Column 5 gives the friction value had it been calculated on the uniformly re�ned
mesh, with column 6 giving the measured error between columns 5 and 2. The ratio of the
correction to the measured error (the e�ectivity index) is shown in column 7, which can be

Table I. Error estimates for uniform meshes and the ratio to the actual error (� = 0:1).

No. mesh Interpolated Calculated Corrected True Measured E�ect.
points friction correction friction friction error index

65 4.5181307 0.1493361 4.3687946 4.3318657 0.1862650 1.2472
129 4.3387398 −0.0047813 4.3435212 4.3496297 −0.0108899 2.2775
257 4.3504149 −0.0047481 4.3551631 4.3554793 −0.0050643 1.0665
513 4.3556633 −0.0014459 4.3571091 4.3571718 −0.0015085 1.0433
1025 4.3572185 −0.0003975 4.3576160 4.3576227 −0.0004042 1.0169
2049 4.3576345 −0.0001030 4.3577374 4.3577381 −0.0001036 1.0065
4097 4.3577411 −0.0000261 4.3577672 4.3577672 −0.0000262 1.0028
8193 4.3577680 −0.0000066 4.3577745 4.3577745 −0.0000066 1.0019
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Table II. Error estimates for non-uniform meshes and the ratio to the actual error (� = 0:1).

No. mesh Interpolated Calculated Corrected True Measured E�ect.
points friction correction friction friction error index

33 4.5187870 0.1490240 4.3697630 4.3327976 0.1859894 1.2480
65 4.3389067 −0.0048500 4.3437567 4.3498617 −0.0109550 2.2587
129 4.3504571 −0.0047639 4.3552210 4.3555374 −0.0050803 1.0664
257 4.3556739 −0.0014496 4.3571235 4.3571864 −0.0015124 1.0433
513 4.3572212 −0.0003984 4.3576196 4.3576264 −0.0004052 1.0169
1025 4.3576351 −0.0001032 4.3577384 4.3577390 −0.0001039 1.0066
2049 4.3577412 −0.0000262 4.3577674 4.3577675 −0.0000262 1.0028
4097 4.3577680 −0.0000066 4.3577746 4.3577746 −0.0000066 1.0019

seen to be converging to unity with increasing mesh resolution. This shows how the linear
approximation becomes more accurate as the non-linear contributions decrease with increased
mesh re�nement.
Having established the accuracy of the error estimate on uniform meshes, Table II shows

similar results for the same nonlinear problem when solved using non-uniform meshes. The
starting mesh is re�ned by one level in the right half of the mesh, and a further level in the
�nal quarter of the mesh. Again, we evaluate the error estimate against the actual error as
measured between each non-uniform mesh and one which is a uniform re�nement of it. The
quality of the adjoint estimates on these irregular spaced meshes is shown to be just as good
as those obtained on uniform grids. This is clearly of great importance if this technique is to
be used to control local mesh re�nement in a reliable manner.
Finally, in this section, we consider a simple adaptive mesh re�nement strategy for the linear

model problem. Local mesh bisection is carried out where the components of the correction
term de�ned by (7) exceed a prescribed tolerance. The correction is calculated using the
coarse mesh solutions of P and � interpolated onto the �ne mesh. Figure 1 shows the re�ned
areas for a sequence of meshes automatically adapted based upon a tolerance of 10−8. As the
mesh is re�ned, the components of the correction term in the re�ned area are reduced. This
continues until the components of the correction for the resulting adaptive mesh are roughly
equal (and always less than the tolerance) throughout the domain. Figure 2 shows how an
increasingly strict tolerance for the correction term results in an increase in the accuracy of
the friction calculation, but with fewer mesh points.

5. CONCLUSIONS AND FUTURE WORK

In this work, we have considered the extension of adjoint-based error estimation techniques
to model problems representing some of the key elements of EHL cases. The friction through
the contact has been used for the functional since this is an industrially relevant quantity of
interest. The free boundary in these cases has also been included in the adjoint system. The
results have shown that this method provides excellent predictions for inter-grid friction error
using both uniform and non-uniform meshes. Moreover, we have shown how the correction
term can be used to highlight the areas of the domain in which the solution contributes the
most to the inter-grid friction error, and can therefore be used as a basis for local re�nement.
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Figure 1. Correction vector with di�erent levels of mesh re�nement, right-hand axis.
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Figure 2. Convergence of friction with maximum allowed re�nement level for di�erent tolerances.

Although these early results are promising, it is also clear that more sophisticated re�nement
procedures such as those presented in Reference [5] or [7], may pay dividends. In the former,
the idea of a ‘duality gap’ is introduced, which indicates the areas with the greatest nonlinear
in�uence between the grids. If this can be reduced, the nonlinear contribution to the error
can also be reduced, which would clearly be of use in this work. In continuing work, the
extension of this approach to the full steady state EHL-line case is being undertaken.
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